AVL Trees
Adelson-Velskii-Landis[AVL] Trees
Definition
- The balance factor BF(node) = \(h_L - h_R\).
- In an AVL Tree, BF(node) = -1, 0, 1.
Different Trees
- Perfect Binary Tree
- Complete Binary Tree
- Full Binary Tree: has two leaf nodes or not. e.g. Huffman Tree
Rotation
-
LL Rotation/RR Rotation
- Two Single Rotation
-
LR Rotation/RL Rotation
- Double Rotation
Analysis
Let \(n_h\) be the minimum number of nodes in a height balanced tree of height \(h\)
\[
\begin{aligned}
n_h &= n_{h-1} + n_{h-2} + 1\\
(n_h + 1) &=(n_{h-1}+1)+(n_{h-2}+1)\\
F_h &= F_{h-1} + F_{h}\ [F_{h+2} = n_h + 1,F_3=2=n_1+1]\\
F_h&\approx\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^h\\
n_h&\approx\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^{h+2}-1\\
h&=O(\ln{n})
\end{aligned}
\]